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1 Introduction

The aim of this notes is to give a complete and self-contained proof of the following
result.

Theorem 1.1 (Marstrand). Let µ be a locally finite Borel measure on Rn, α ≥ 0 and
E ⊆ Rn a Borel set s.t. µ(E) > 0. Assume that

0 < Θ∗α(µ, x) = Θ∗α(µ, x) < +∞ for µ-a.e. x ∈ E.

Then α is an integer.

This beautiful theorem was first proved by Marstrand in [2]; in deed, the author
proved a much stronger result, which provides important information on the measures
µ that satisfies the assumptions of theorem 1.1. Moreover, it is the starting point of the
Preiss’ regularity theory (see [4]). It is well known that, given E a locally Hd-finite and
d-rectifiable set in Rn, the measure µ = HdxE has d-dimensional density 1 for Hd-a.e.
x ∈ E (see [3]). The Preiss’ regularity theory goes in the opposite direction. The first
part of the statement above is the Marstrand’s theorem.

Theorem 1.2 (Preiss). Given a Borel locally finite measure µ s.t. Θα(µ, x) exists, it
is finite and positive for µ-a.e. x ∈ E, then α is integer the support of µ can be covered
µ-a.e. by an α-rectifiable set.

Our proof of theorem 1.1 is based on the notion of tangent measures: given µ as
in the Marstrand’s theorem, a "blow-up" procedure provides the existence of a second
(non trivial) measure ν, with the property of being α-uniform (see 1.22).

The presentation given has been strongly inspired by that of chapter 14 of [2] and
that of chapter 3 of the [1].

1.1 Preliminaries

We briefly recall some preliminaries and well known notions; the following can be found
in any book of Geometric Measure Theory (for instance, see [3]).
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1.1.1 α-dimensional density

Definition 1.3 (α-density). Let µ be a locally finite Borel measure in Rn, x ∈ Rn and
α ≥ 0. We define the lower α-dimensional density of µ at x as

Θ∗α(µ, x) := lim inf
r→0

µ(Br(x))

ωαrα
;

similarly, we define the upper α-dimensional density of µ at x as

Θ∗α(µ, x) := lim sup
r→0

µ(Br(x))

ωαrα
.

If Θ∗α(µ, x) = Θ∗α(µ, x), we denote the common value as Θα(µ, x). We say that µ
admits α-dimensional density at x.

Remark 1.4. The constant ωα in 1.3 is only needed as a normalization factor: if α is not
integer, we can freely assume ωα = 1; if α is integer, we set ωα to be the α-dimensional
volume of the unit ball in Rα.

1.1.2 Convergence in the sense of measure

Definition 1.5 (Weak* convergence of measures). Given (µn)n, µ∞ of locally finite
Borel measures on Rn, we say that (µn)n converges to µ∞ locally in the sense of measure
(or simply µn

∗
⇀ µ∞) if the following holds true:

lim
n→+∞

ˆ
Rn
g(y) dµn(y) =

ˆ
Rn
g(y) dµ∞(y) ∀g ∈ Cc(Rn).

Remark 1.6. In other words, the convergence in the sense of measure that we will
consider is the one induced by duality with continuous functions compactly supported.
In deed, this notion of convergence makes sense, since we deal with locally finite Borel
measures.

The following properties hold true.

Proposition 1.7. Let (µn)n be a sequence of locally finite Borel measures that converges
weakly* to a locally finite Borel measure µ. Then, for all lower semicontinuous and
compactly supported function f : Rn → R there holds

ˆ
Rn
g(y) dµ(y) ≤ lim inf

n→+∞

ˆ
Rn
g(y) dµn(y).

In particular, the followings hold true:

• for all open set A there holds

µ(A) ≤ lim inf
n→+∞

µn(A);

• for all closed set C there holds

µ(C) ≥ lim sup
n→+∞

µn(C);
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• for all Borel set E s.t. µ(E) = 0, there holds

µ(E) = lim
n→+∞

µn(E).

Theorem 1.8 (Compactness of measures). Given a sequence (µn)n of locally finite
Borel measures on Rn, assume that (µn)n is locally uniformly bounded, i.e. for all r > 0
there holds

sup
n∈N

µn(Br) < +∞.

Then, up to subsequences, (µn)n converges weakly* to a locally finite Borel measure.

1.1.3 Besicovitch’s covering theorem

Definition 1.9 (Besicovitch’s covering). Let E ⊆ Rn; let F be a family of balls in Rd

s.t.
inf{r | B(x, r) ∈ F} = 0 ∀x ∈ E.

We say that F is a Besicovitch’s covering of E.

Theorem 1.10 (Besicovitch’s covering theorem - 1). Let µ be a Borel, locally finite
measure on Rn. Let E ⊆ Rn be a Borel set s.t. µ(E) < +∞. Let F be a family of
closed balls which is a Besicovitch’s covering of E (see 1.9). Then, for all ε > 0 there
exists F ′ ⊆ F disjoint s.t.

• F ′ is disjoint, at most countable and covers µ-a.a. of E;

•
∑

B∈F ′ µ(B) ≤ µ(E) + ε.

Theorem 1.11 (Besicovitch’s covering theorem - 2). Let µ be a Borel, locally finite
measure on Rn. Let E ⊆ Rn be a Borel set s.t. µ(E) < +∞. Let F be a family of
closed balls which is a Besicovitch’s covering of E (see 1.9). Then, for all ε > 0 there
exists F ′ ⊆ F disjoint s.t.

• F ′ covers µ-a.a. of E;

•
∑

B∈F ′ µ(B) ≤ µ(E) + ε.

Theorem 1.12 (Besicovitch’s differentiation theorem). Let µ be a locally finite Borel
measure Rn and f ∈ L1

loc(Rn, µ) be a nonnegative measure. Then, for µ-a.e. x ∈ Rn

the following holds true:

lim
r→0

 
Br(x)

|f(x)− f(y)| dµ(y) = 0;

in particular, for µ-a.e. x ∈ Rn, f is L1 approximately continuous at x, that is

f(x) = lim
r→0

 
Br(x)

f(y) dµ(y).
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1.2 Blow-up of a measure in a point

Blowing up a measure µ in a point x means looking at the behaviour of µ in very small
neighbourhoods of x. Despite being very simple and intuitive, this idea is surprisingly
powerful and it gives important information on the measure itself. We describe this
procedure.

We introduce the following notation, which will be extremely useful.

Definition 1.13. Let µ be a locally finite Borel measure in Rn, x ∈ Rn and r > 0. We
denote as µx,r the locally finite Borel measure on Rn defined by

µx,r(A) := µ(x+ rA) ∀A ⊆ Rn Borel.

Remark 1.14. Given µ, x, r as in 1.13, we denote as Tx,r : Rn → Rn the affine map

Tx,r(y) :=
y − x
r

.

By definition 1.13, there holds that

µx,r(A) = µ(T−1
x,r (A)) ∀A ⊆ Rn Borel.

In other words, µx,r is the push-forward of µ according to Tx,r. Then, given f ∈ L1(Rn, µ),
we deduce that f ∈ L1(Rn, µx,r); moreover, there holds

ˆ
Rn
f(y) dµx,r(y) =

ˆ
Rn
f ◦ Tx,r(y) dµ(y) =

ˆ
Rn
f

(
y − x
r

)
dµ(y).

Definition 1.15 (Tangent measure). Let µ be a locally finite Borel measure in Rn,
x ∈ Rn and r > 0. We denote as Tanα(µ, x) the set of all measure ν for which there
exists a sequence of positive radii ri ↓ 0 s.t.

µx,ri
rαi

∗
⇀ ν.

Remark 1.16. The notion of tangent measures given in 1.15 is not the most general
possible. In deed, this notion was first introduced by Preiss in [4], where all the weak*
limit of sequence of the form ciµx,ri are considered. In the following, we will only deal
with the definition of tangent measures given in 1.15, since it carries all the information
needed.

Remark 1.17. Clearly, the tangent measures of definition 1.15 are locally finite and
Borel. As remarked in 1.14, the convergence in the definition 1.15 can be stated as
follows:

lim
i→∞

ˆ
Rn

1

rα
g

(
y − x
r

)
dµ(y) =

ˆ
Rn
g(y) dν(y) ∀g ∈ Cc(Rn).

Remark 1.18. Blowing-up the measure µ blowing up at the point x means that we want
to study the limiting behaviour of µx,r

rα
as r ↓ 0. By definition 1.13, it is immediate to

see that
µx,r(B1)

rα
=
µ(Br(x))

rα
.

As r ↓ 0, the numerator goes to the measure of the point x and the denominator blows
up to ∞. In other words, when r is very small, µx,r spreads the measure µ of the ball
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Br(x) in the unit ball. In this sense, the measure µx,r zooms in the measure µ in a
very small neighbourhood of the point x (which becomes the "new" origin the zoomed
euclidean space). As for the denominator, if rα is the right scaling factor, the limiting
behaviour of µx,r

rα
might be a (non trivial) measure carrying useful information on the

geometry of the support of µ in a neighbourhood of x.
In the following, we describe the blow up procedure in the classical case. This will

show as the notion of the tangent measure can be seen as a suitable definition of the
concept of tangent planes to a C1 submanifold of Rn.

Proposition 1.19 (Tangent measures to a C1 submanifold). Let Σ be k-submanifold
of Rn of class C1 (without boundary). Letting µ := HkxΣ, the followings hold true:

• for all x ∈ Σ for all r > 0 we have

µx,r
rk

= Hkx
(

Σ− x
r

)
;

• for all x ∈ Σ, we have

Hkx
(

Σ− x
r

)
∗
⇀ HkxTanxΣ as r ↓ 0,

where TanxΣ is the tangent plane of Σ at x.

Remark 1.20. In the framework of proposition 1.19, for all x ∈ Σ, we deduce that
HkxTanxΣ is the unique tangent measure to HkxΣ at x. In some sense, this is not
surprising: as we zoom in the neighbourhood of x the manifold Σ looks almost like
the tangent plane TanxΣ; similarly, the k-dimensional Hausdorff measure on Σ looks
almost like the Lebesgue measure on a k-dimensional linear space.

Proof of 1.19. Fix x ∈ Σ. As for the first statement, given r > 0, by the rescaling
property of Hk, for all A ⊆ Rn Borel we have

µx,r(A)

rk
=

1

rk
Hk((x+ rA) ∩ Σ)

= HK

((x
r

+ A
)
∩ Σ

r

)
= Hk

(
A ∩ Σ− x

r

)
= Hkx

(
Σ− x
r

)
(A).

We denote as Bk
δ the k-dimensional ball centered at the origin in Rk of radius δ. As

for the second statement, we can make the following assumptions:

• x = 0;

• TanxΣ = Span(e1, . . . , ek) = Rk, where Rn = Rk × Rn−k;

• there exist δ > 0 and a C1 map Φ : Bk
δ → Bn−k

δ s.t. Γ∩ (Bk
δ ×Bn−k

δ ) is the graph
of Φ, that is

Γ ∩ (Bk
δ ×Bn−k

δ ) = {(x,Φ(x)) ∈ Rk × Rn−k | x ∈ Bk
δ }.
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Let g be a test function in Cc(Rn); we have to check that

lim
r→0

ˆ
Rn
g dHkx

(
Σ

r

)
=

ˆ
Rn
g dHkx(TanxΣ). (1)

Under our assumptions, (1) becomes

lim
r→0

ˆ
Σ/r

g(y) dHk(y) =

ˆ
Rk
g(x, 0) dx (2)

Notice that Σ/r can be parameterized in Bδ/r ×Bn−k
δ/r as follows:

Σ/r ∩ (Bk
δ/r ×Bn−k

δ/r ) =

{(
z,

Φ(rz)

r

)
∈ Rk × Rn−k

∣∣∣∣ z ∈ Bk
δ/r

}
.

Since we are interested in the limiting behaviour as r approaches 0, there exists η > 0
s.t. for all r ∈ (0, η) there holds

supp(g) ⊆ Bk
δ/r ×Bn−k

δ/r .

Given x ∈ Bk
δ , denote by JΦ(x) the jacobian determinant of Φ; by the area formula,

for r ∈ (0, η) there holds
ˆ

Σ/r

g(y) dHk(y) =

ˆ
Bk
δ/r

g

(
z,

Φ(zr)

r

)√
1 + JΦ(rz) dx. (3)

Under our assumptions, notice that the map Φ as differential dΦ that vanishes at zero;
hence, JΦ(0) = 0. As r ↓ 0, for all z ∈ Rk, there holds that

lim
r→0

Φ(zr)

r
= dΦ0(z) = 0.

Since Φ is a map of class C1, we have that

lim
r→0

JΦ(rz) = 0.

It is easy to show that the pointwise limit above are are uniformly bounded with respect
to r ∈ (0, η) and z in any compact set of Rk. Then, by the dominated convergence
theorem, we deduce that

lim
r→0

ˆ
Bk
δ/r

g

(
z,

Φ(zr)

r

)√
1 + JΦ(rz) dx =

ˆ
Rk
g(x, 0) dx. (4)

Another important (and intuitive) fact is that the notion of tangent measure is
completely local, as explained by the proposition above.

Proposition 1.21 (Locality of Tanα). Let µ be a locally finite Borel measure on Rn,
α ≥ 0 and f ∈ L1

loc(Rn, µ) s.t. f(x) ≥ 0 for µ-a.e. x ∈ Rn. Then, for µ-a.e. Rn there
holds

Tanα(f · µ, x) = f(x)Tanα(µ, x). (5)

In particular, for any Borel set B ⊆ Rn the following holds true for µ-a.e. B:

Tanα(µxB, x) = Tanα(µ, x). (6)
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Proof. We claim that (5) holds for every x ∈ B1, where Ω is defined as follows:

Ω :=

{
x ∈ Rn

∣∣∣∣ lim
r→0

 
Br(x)

|f(y)− f(x)| dµ(y) = 0

}
.

The conclusion follows by the fact that µ(Rn \ Ω) = 0; in deed, it is well knows that
f ∈ L1

loc(Rn, µ) implies that f is L1-approximately continuous at µ-a.e. x ∈ Rn.
Fix x ∈ Ω and ν ∈ Tanα(µ, x). By definition 1.15, there exists ri ↓ 0 s.t.

νi :=
µx,ri
rαi

∗
⇀ ν.

For all i ∈ N define
ν ′i :=

(f · µ)x,ri
rαi

.

We claim that ν ′i → fν; this would imply that

Tanα(f · µ, x) ⊆ f(x)Tanα(µ, x).

Given ρ > 0, if we apply 1.17 we can compute

(f(x)νi − ν ′i)(Bρ) =
1

rαi
(f(x)µx,ri − (f · µ)x,ri) (Bρ)

=
1

rαi

[
f(x)µ(Briρ(x))−

ˆ
Bρ

f(y) dµx,ri(y)

]

=
1

rαi

[
f(x)µ(Briρ(x))−

ˆ
Briρ(x)

f(y) dµx,ri(y)

]
=

1

rαi

ˆ
Briρ(x)

[f(x)− f(y)] dµx,ri(y). (7)

Taking the total variation in the ball Bρ, (7) leads to

|f(x)νi − ν ′i| (Bρ) ≤
1

rαi

ˆ
Briρ

|f(x)− f(y)| dµ(y)

=
µ(Briρ(x))

rαi

 
Briρ(x)

|f(x)− f(y)| dµ(y). (8)

Since x ∈ Ω, if we show that the ratio

µ(Briρ(x))

rαi
=
µx,ri(Bρ)

rαi
= νi(Bρ)

is uniformly bounded with respect to i, from (8) we immediately deduce that

lim
i→+∞

|f(x)νi − ν ′i| (Bρ) = 0. (9)

In other words, (f(x)νi− ν ′i)i converges to 0 in total variation in any balls; in particular,
(f(x)νi− ν ′i)i converges to 0 locally in the sense of measures. Since (f(x) · νi)i converges
weak* to f(x)ν, we deduce that (ν ′i)i converges weak* to f(x)ν, as desired. Having
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said that, take g ∈ Cc(Rn) s.t. g takes values in [0, 1] and g ≡ 1 in Bρ. From the
convergences in the sense of measures it follows that

lim sup
i→+∞

νi(Bρ) ≤ lim sup
i→+∞

ˆ
Rn
g(y) dνi(y) =

ˆ
Rn
g(y) dν(y) < +∞.

Thus, we have shown that

Tanα(f · µ, x) ⊆ f(x)Tanα(µ, x).

As for the reverse inclusion, we can argue in a similar way.
If we take f := 1B, for some Borel set B ⊆ Rn, immediately obtain (6) from (5).

1.3 α-uniform measures

We introduce the notion of α-uniform measure; we will prove that in the hypothesis of
theorem 1.1, there are very interesting tangent measures, which have the property of
being α-uniform. This fact will play a crucial role in the proof of Marstrand’s theorem.

Definition 1.22 (α-uniform measure). Let µ be a locally finite Borel measure on Rn

and α ≥ 0. We say that µ is α-uniform if the following holds:

µ(Br(x)) = ωαr
α ∀x ∈ supp(µ) ∀r > 0, (10)

where ωα is defined as in 1.4. We denote by Uα(Rn) the set of the α-uniform measures
ν s.t. 0 ∈ supp(ν).

Remark 1.23. • The fact that the support of measure µ ∈ Uα(Rn) must contain 0
is simply needed to exclude the zero measure from Uα(Rn).

• From (10), there follows immediately the same property for closed balls. In deed,
given µ α-uniform, x ∈ supp(µ) and r > 0, for all ε > 0 there holds

µ(∂Br(x)) ≤ µ(Br+ε(x))− µ(Br(x)) = ωα[(r + ε)α − rα] = o(ε).

Thus, we obtain µ(∂Br(x)) = 0, which implies that

µ(Br(x)) = ωαr
α ∀x ∈ supp(µ) ∀r > 0. (11)

The huge symmetry properties of a measure µ ∈ Uα(Rn) yields a useful change of
variable formula.

Proposition 1.24. Let µ be an α-uniform measure in Rn, for some α ≥ 0. Let
ϕ : [0,+∞)→ R be a Borel function s.t. ϕ(|·|) ∈ L1(Rn, µ). Then, for all y ∈ supp(µ)
there holds ϕ(|· − y|) ∈ L1(Rn, µ); furthermore, there holdsˆ

Rn
ϕ(|z|) dµ(z) =

ˆ
Rn
ϕ(|z − y|) dµ(z). (12)

Proof. Assume that ϕ = 1[0,r); then, (12) is an immediate consequence of (10). By
linearity, (12) holds true if ϕ is a step function of the type

ϕ =
N∑
i=1

ai1[0,ri).

By approximation and Beppo Levi’s theorem, we deduce that (12) holds true if ϕ is
a nonnegative functions; hence, we immediately extend (12) to the case in which ϕ is
real-valued and ϕ(|·|) ∈ L1(Rn, µ).
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We can easily characterize the α-uniform measure in Rn for α ≥ n.

Proposition 1.25. Given α ≥ n, take µ an α-uniform measure in Rn. Then µ is
absolutely continuous with respect to L n. Moreover, if α > n, then Uα(Rn) = ∅; if
α = n, then Uα(Rn) = {L n}.

Proof. Step 1: Take E ⊆ Rn a Borel set s.t. L n(E) = 0; we have to show that
µ(E) = 0. Without loss of generality, we can assume that E ⊆ supp(µ): in deed,
µ(E \ supp(µ)) = 0. Then, by Besicovitch’s covering theorem, for all ε > 0 we can cover
E with at most countably many balls (Bi)i centered in E of radii at most 1 s.t.∑

i

L n(Bi) ≤ ε.

For simplicity, denote Bi = Bri(xi); recall that ri ≤ 1 and xi ∈ supp(µ) for all i. Since
α ≥ n, there holds

ε ≥
∑
i

L n(Bi) =
∑
i

ωnr
n
i

=
ωn
ωα

∑
i

ωαr
α
i r

n−α
i ≥ ωn

ωα

∑
i

ωαr
α
i

=
ωn
ωα

∑
i

µ(Bi) ≥
ωn
ωα
µ(E).

Since ε > 0 is arbitrary, we infer that µ(E) = 0.
Step 2: We have that µ and L n are both σ-finite measure (in deed, they are locally

finite). So, the Radon-Nikodym theorem provides the existence of f ∈ L1
loc(Rn,L n)

nonnegative s.t. µ = f ·L n. From the Besicovitch’s differentiation theorem and the
fact that µ is α uniform, we deduce that for L n−a.e. x ∈ Rn there holds

f(x) = lim
r→0

µ(Br(x))

ωnrn
= lim

r→0

ωα
ωn
rα−n. (13)

If α > n, then (13) yields f(x) = 0 for L n-a.e. x ∈ Rn, that is µ ≡ 0; however, this is
against the fact that 0 ∈ supp(µ), as in definition 1.22. Then, Uα(Rn) = ∅ if α > n.

If n = α, then (13) implies that f(x) = 1 for all x ∈ supp(µ). Since µ ∈ Un(Rn) (in
particular, 0 ∈ supp(µ)), for all r > 0 there holds

ωnr
n = µ(Br) =

ˆ
Br

f(y) dL n(y) = L n(Br ∩ supp(µ)). (14)

Since supp(µ) is closed, we deduce that Brsupp(µ) (recall that every non empty open
set in Rn has positive Lebesgue measure). Since r is arbitrary, we conclude that
supp(µ) = Rn, that is µ = L n.

The simple characterization given in 1.25 yields the corollary below, which will
be extremely useful in the following. It goes in the direction of studying α-uniform
measures concentrated on specific subsets of the euclidean space.

Corollary 1.26. Let µ be measure in Um(Rn), where m,n are positive integer. Assume
that supp(µ) ⊆ V , where V is an m-dimensional affine subspace in Rn. Then, µ =
HmxV .
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Proof. Clearly, we can see µ as an m-uniform measure measure in V ' Rm. Proposition
1.25 implies that µ is the m-dimensional Lebesgue measure in Rm, that is µ = HmxV
(under the identification of V and Rm).

As explained in 1.4, ωα is only a normalization constant in definition 1.22. However,
its choice for α integer guarantees that HkxV is a k-uniform measure in Rn for all
k-dimensional affine plane V ⊆ Rn. In deed, this fact is obvious. We just mention
the extremely interesting fact that, if k is an integer less than n, there exist k-uniform
measures in Rn which are not of the form HkxV , for some k-dimensional affine plane
V ⊆ Rn.

2 Proof of Mastrand’s theorem
We are now in the position to give a complete proof of theorem 1.1. For the reader
convenience, we split this long proof in some parts.

The Mastrand’s theorem is an immediate consequence of the following propositions.

Proposition 2.1. Let µ be a measure as in theorem 1.1. Then, for µ-a.e. x ∈ E there
holds

∅ 6= Tanα(µ, x) ⊆ {Θα(µ, x)ν | ν ∈ Uα(Rn)} . (15)

Proposition 2.2. If Uα(Rn) 6= ∅, then α is an integer less or equal than n.

If we assume propositions 2.1 and 2.2, the proof of Marstrand follows easily.

Proof of theorem 1.1. Since E has positive measure, proposition 2.1 yields the existence
of x ∈ E s.t. (15) holds true. In particular, Uα(Rn) 6= ∅; then, by proposition 2.2, we
infer that α is an integer less or equal than n.

The following sections are devoted to prove propositions 2.1 and 2.2.

2.1 Proof of proposition 2.1

As for proposition 2.1, the proof is based on a very common "countable decomposition"
argument.

Proof of proposition 2.1. Without loss of generality, we can assume that for all x ∈ E
Θα(µ, x) exists, it is positive and finite.

Step 1: Given i, j, k ∈ N consider the sets

Ei,j,k :=

{
x ∈ Rn

∣∣∣∣ (j − 1)ωα
i

≤ µ(Br(x))

rα
≤ (j + 1)ωα

i
∀r ≤ 1

k

}
.

By the assumption on E, we immediately see that

E ⊆
⋂
i

⋃
j,k

Ei,j,k.

Fix i, j, k ∈ N ; we claim that for µ-a.e. x ∈ Ei,j,k the following holds:

|ν(Br(y))−Θα(µ, x)ωαr
α| ≤ 2ωαr

α

i
∀ν ∈ Tanα(µxEi,j,k, x), ∀y ∈ supp(ν), ∀r > 0.

(16)
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By the locality property of tangent measures (see 1.21) and (16), we obtain that for
µ-a.e. x ∈ Ei,j,k the following holds:

|ν(Br(y))−Θα(µ, x)ωαr
α| ≤ 2ωαr

α

i
∀ν ∈ Tanα(µ, x), ∀y ∈ supp(ν), ∀r > 0. (17)

Fix i ∈ N; since E ⊆
⋃
j,k E

i,j,k, we deduce (17) holds for µ-a.e. x ∈ E. Then, we have
that for µ-a.e. x ∈ E the following holds:

|ν(Br(y))−Θα(µ, x)ωαr
α| ≤ 2ωαr

α

i
∀ν ∈ Tanα(µ, x), ∀y ∈ supp(ν), ∀r > 0, ∀i ∈ N,

which immediately yields

ν(Br(y)) = Θα(µ, x)ωαr
α ∀ν ∈ Tanα(µ, x), ∀y ∈ supp(ν), ∀r > 0. (18)

In other words, ν
Θα(µ,x)

is an α-uniform measure; to conclude that ν ′ := ν
Θα(µ,x)

∈ Uα(Rn),

it suffices to show that 0 ∈ supp
(

ν
Θα(µ,x)

)
, that is 0 ∈ supp(ν). In deed, by the

convergence in the sense of measures, for all ρ > 0, there holds

ν(Bρ)

ρα
≥ 1

ρα
lim sup
i→+∞

µx,ri(Bρ)

rαi

≥ lim sup
i→+∞

µ(Bρri(x))

(ρri)α

≥ ωαΘα(µ, x) > 0.

Letting ρ ↑ r, we deduce that

ν(Br) ≥ ωαΘα(µ, x) > 0 ∀r > 0. (19)

Hence, 0 ∈ supp(ν).
Step 2: We are left with the task of proving that for all i, j, k ∈ N (16) holds for

µ-a.e. x ∈ Ei,j,k. Since i, j, k are fixed, set F = Ei,j,k; define

F1 :=

{
x ∈ F

∣∣∣∣ lim
r→0

µ(Br(x) \ F )

rα
= 0, Tanα(µ, x) = Tanα(µxF, x)

}
= {x ∈ F | Θ∗α(µxF c, x) = 0, Tanα(µ, x) = Tanα(µxF, x)} .

Recall that µ(F \ F1) = 0; so, it suffices to show (16) for all x ∈ F1. Fix x ∈ F1,
ν ∈ Tanα(µxF, x) = Tanα(µ, x) and ri ↓ 0 s.t.

νi :=
(µxF )x,ri

rαi

∗
⇀ ν.

We claim that for all y ∈ supp(ν) there exists (xi)i ⊆ F s.t.

yi :=
xi − x
ri

→ y.

By the convergence in the sense of measures, for all ρ > 0 we have that

0 < ν(Bρ(y)) ≤ lim inf
i→+∞

νi(Bρ(y)) = lim inf
i→+∞

µ(Bρri(x+ riy) ∩ F )

rαi
.
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In particular, µ(Bρri(x+ riy)∩F ) > 0 for all i large enough. Then, it is clear that there
exists N(ρ) s.t. for i > N(ρ) there exists xi,ρ ∈ Bρri(x+ riy) ∩ F . So, we have that∣∣∣∣xi,ρ − xri

− y
∣∣∣∣ ≤ ρ.

At this point, with a diagonal argument, we built a sequence (xi)i ⊆ F s.t.

lim
i→+∞

∣∣∣∣xi − xri
− y
∣∣∣∣ = 0.

We claim that there exists S ⊆ R+ at most countable s.t. for all ρ ∈ R+ \ S there holds

lim
i→+∞

νi(Bρ(yi)) = ν(Bρ(y)). (20)

Notice that the center of the balls in (20) are not the same. So, we define ξi := (νi)yi−y,1.
Then, (20) becomes

lim
i→+∞

ξi(Bρ(y)) = ν(Bρ). (21)

Assume that ξi
∗
⇀ ν; the existence of such S ⊆ R+ follows from the fact that

lim
i→+∞

ξi(A) = ν(A)

for all A open s.t. ν(∂A) = 0; since ν is locally finite, there exist at most countably
many radii ρ s.t. ν(∂Bρ(y) is positive. Having said that, it is immediate to check that
ξi
∗
⇀ ν: in deed, this is obvious by the facts that νi

∗
⇀ ν and yi → y.

Fix ρ ∈ R+ \ S; let us compute

lim
i→+∞

νi(Bρ(yi)) = lim
i→+∞

µ(Bρri(xi) ∩ F )

rαi
. (22)

Since xi−x
ri
→ yi, there exists a constant C > 0 s.t. |xi − x| ≤ Cri for all i. So, by the

fact that x ∈ F1, we obtain that

lim
i→+∞

µ(Bρri(xi) \ F )

rαi
≤ lim

i→+∞

µ(B(C+ρ)ri(x) \ F )

rαi
= 0. (23)

By (20), (22), (23) and the fact the x ∈ F = Ei,j,k, we deduce that

ν(Bρ(y)) = lim
i→+∞

νi(Bρ(yi)) = lim
i→+∞

µ(Bρri(x))

rαi
∈
(

(j − 1)ωαρ
α

i
,
(j + 1)ωαρ

α

i

)
. (24)

Notice, that by definition of F , the quantity Θα(µ, x)ωαρ
α belongs to the same interval.

Then, we deduce that for all ρ ∈ R+ \ S there holds

|ν(Bρ(y))−Θα(µ, x)ωαρ
α| ≤ 2

ωαρ
α

i
. (25)

Since S is at most countable, by continuity, we deduce that (25) holds true for all
ρ ∈ R+, which proves (16).
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Step 3: We have shown that Tanα(µ, x) ⊆ Θα(µ, x)Uα(Rn) for µ-a.e. x ∈ E.
To conclude, we show that Tanα(µ, x) 6= ∅ for µ-a.e. x ∈ E. Fix any x ∈ E s.t.
Θα(µ, x) < +∞. Then, for all ρ > 0, we have that

sup
r>0

µ(Bρr(x))

rα
= sup

r>0

µx,r(Bρ)

rα
< +∞.

Hence, the family of measures (r−αµx,r)r≤1 is locally uniformly bounded; by the com-
pactness of measures with respect to the weak* convergence (in duality with Cc(Rn)),
we deduce that there exist a subsequence ri ↓ 0 and a locally finite Borel measure ν s.t.

µx,r
rα

∗
⇀ ν.

In other words, ν ∈ Tanα(µ, x) by definition.

2.2 Proof of proposition 2.2

We highlight the main steps of the proof of the proposition 2.2, which can be divided in
some lemmas.

Sketch of proof of 2.2. 1. We already know that Uα(Rn) = ∅ if α > n (see 1.25).

2. The fundamental step consists in showing that, if α < n, then Uα(Rn) 6= ∅ implies
that Uα(Rn−1) 6= ∅.

3. By iteration of the previous argument, we obtain that Uα(R[α]) 6= ∅. Assume by
contradiction that α is not integer; then α > [α] and Uα(R[α]) should be empty
by the first of these steps. Hence, we find a contradiction.

We study the tangent measures to an α-uniform measure. Having in mind the
heuristic description given in 1.18 and the definition 1.22, it would not by surprising
that the tangent measures to an α-uniform measure are still α-uniform measures, as
shown in the lemma below. The proof is very similar to that of proposition 2.1

Lemma 2.3. Let α ≥ 0, µ ∈ Uα(Rn) and x ∈ supp(µ). Then

∅ 6= Tanα(µ, x) ⊆ Uα(Rn).

Remark 2.4. Given a measure µ as in theorem 1.1, proposition 2.1 guarantees that
tangent measures are (up to multiplicative factors) α-uniform measures µ-a.e. In some
sense, lemma 2.3 is the analogous of the following: take Σ submanifold of class C1 in
Rn and x ∈ Σ; then Tanx(Tanx(x+ TanxΣ) = TanxΣ.

Proof of 2.3. The argument given in the third step of the proof of proposition 2.1
shows that Tanα(µ, x) 6= ∅ for all x ∈ supp(µ): since µ is α-uniform, at every point
x ∈ supp(µ) there holds that Θα(µ, x) = 1.

Now fix x ∈ supp(µ), ν ∈ Tanα(µ, x) and ri ↓ 0 s.t.

νi :=
µx,ri
rαi

∗
⇀ ν.

Given y ∈ supp(ν), arguing as in the second step of the proof of proposition 2.1, we
can easily check the following facts:
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• there exists a sequence (xi)i ∈ supp(µ) s.t.

yi :=
xi − x
ri

→ y;

• there exists a set S ⊆ R+ at most countable s.t. for all ρ ∈ R+ \ S there holds

ν(Bρ(y)) = lim
i→+∞

µx,ri(Bρ(xi))

rαi
= lim

i→+∞

µ(Bρri(x))

rαi
= ωαρ

α,

where we use also use the fact that µ is α-uniform.

• Since S is at most countable, by continuity, we deduce that

ν(Br(y)) = ωαr
α ∀r > 0.

We only have to check that 0 ∈ supp(ν). Fix ρ > 0; by the weak* convergence and the
fact that µ is α-uniform, it follows that

ν(Bρ) ≥ lim sup
i→+∞

µx,ri(Bρ)

rαi
= lim sup

i→+∞

µ(Bρri(x))

rαi
= ωαρ

α > 0.

By approximation, we deduce that every open ball centered at the origin has positive
measure ν.

The following is an elementary geometric remark.

Lemma 2.5. Take 0 ≤ α < n and µ ∈ Uα(Rn). There exists y ∈ supp(µ) and a system
of coordinates (x1, . . . , xn) on Rn s.t.

supp(ν) ⊆ {x1 ≥ 0} ∀ν ∈ Tanα(µ, x). (26)

Proof. Set E := supp(µ). Since α < n, we claim that E 6= Rn; in deed, we show that
B1 is not contained in E. Assume by contradiction that B1 ⊆ E; then, we can use
the Besicovitch’s covering theorem to cover L n-a.a. on B1 with at most countably
many disjoint balls (Bi)i of radii at most 1. For all i, we set Bi = Bri(xi); recall that
xi ∈ B1 ⊆ E and ri < 1. Since µ is α-uniform and α < n, we have that

µ(B1) ≥
∑
i

µ(Bri(xi)) =
∑
i

ωαr
α
i >

∑
i

ωα
ωn

L n(Bri(xi)) = ωα
L n(B1)

ωn
= ωα. (27)

Then µ(B1) > ωα; since 0 ∈ supp(µ), this yields a contradiction.
Having shown that E 6= Rn, fix y /∈ E; since E ia a non empty closed set, there

exists z ∈ E s.t. dist(y, E) = |y − z| := a. We can choose coordinates (x1, . . . , xn) in
Rn s.t. z = 0 and y = (−a, 0, . . . , 0). Set

Ẽ := Rk \Ba(y);

by definition of distance from a subset, we have that E ⊆ Ẽ (see figure 1). We claim
that z fulfils the required properties. Fix ν ∈ Tanα(µ, 0) and a sequence ri ↓ 0 s.t.

νi =
µ0,ri

rαi

∗
⇀ 0.
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Figure 1 Figure 2

Clearly, the support of νi is contained in the set

Ẽi := Rn \Ba/ri

(
y

ri

)
.

Notice that for any x in the half space {x1 < 0} there exist r0 > 0 and N ∈ N s.t.
Br(x)∩ Ẽi for all i ≥ N for all r ≤ r0 (see figure 2). Then, we obtain that νi(Br(x)) = 0
for all i ≥ N for all r ≤ r0. Thus, ν(Br(x)) = 0 for all r < r0. This is enough to
conclude that x /∈ supp(ν).

The next lemma is the key step in the proof of proposition 2.2.

Lemma 2.6. Take 0 ≤ α < n and µ ∈ Uα(Rn). If supp(ν) ⊆ {x1 ≥ 0}, then for all
ν̃ ∈ Tanα(ν, 0) there holds

supp(ν̃) ⊆ {x1 = 0}.

Remark 2.7. In some sense, the statement of lemma 2.6 is the analogous of the fact
that the tangent space to the half space is an hyperplane of codimension 1.

Proof of 2.6. Take ν̃ ∈ Tanα(ν, 0); given r > 0, define the quantities

b(r) := ωα

 
Br

z dν(z), c(r) := ωα

 
Br

z dν̃(z),

where the integrals are defined component-wise. Up to the multiplicative factor ωα,
b(r) and c(r) are the baricenters of the measure νxBr and ν̃xBr, respectively. Denote
b(r) = (b1(r), . . . , bn(r)) and c(r) = (c1(r), . . . , cn(r)). Since supp(ν) ⊆ {x1 ≥ 0}, we
have that b1(r) ≥ 0 for all r > 0; similarly, since supp(ν̃) ⊆ supp(ν) ⊆ {x1 ≥ 0}, then
c1(r) ≥ 0. If we prove that c1(r) = 0, then we conclude immediately that

supp(ν̃xBr) ⊆ {x1 = 0} (28)
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Since supp(ν̃xBr) ⊆ supp(ν̃) ∩Br, then the validity of (28) for all r > 0 yields

supp(ν̃) ⊆ {x1 = 0}.

Hence, we have to show that c1(r) = 0 for all r > 0; in deed, we will show that c(r) = 0
for all r > 0. By the α-uniform properties of ν, ν̃ (ν̃ ∈ Uα(Rn) because of 2.3), it follows
that

b(r) =
1

rα

ˆ
Br

z dν(z), c(r) =
1

rα

ˆ
Br

z dν̃(z). (29)

We have to show that c(r) = 0 for all r > 0. The idea is to study the limiting behaviour
of b(r) when r ↓ 0.

Step 1: We will check that there exists a constant C(α) > 0, depending only on α,
s.t. for all r > 0 for all y ∈ supp(ν) ∩B2r there holds

|< b(r), y >| ≤ C(α) |y|2 . (30)

Now, we show how to conclude the proof. Fix ri ↓ 0 s.t.

νi :=
ν0,ri

rαi

∗
⇀ 0.

By the weak* convergence of measures, it follows that there exists S ⊆ R+ at most
countable s.t. for all ρ ∈ R+ \ S there holds

lim
i→+∞

b(riρ) = c(ρ); (31)

in deed, we have

b(ρri) =
1

ραrαi

ˆ
Bρri

z dν(z) =
1

ρα

ˆ
Bρ

z dνi(z); (32)

by the weak* convergence of measure, we deduce that

lim
i→+∞

1

ρα

ˆ
Bρ

z dνi(z) =
1

ρ
z dν̃(z)

for all ρ ∈ R+ s.t. ν̃(∂Bρ) = 0. Since ν̃ is locally finite, the set of the radii ρ for which
ν̃(∂Bρ) > 0 is at most countable. Then, we obtain (31) for all ρ ∈ R+ \ S.

Take ρ ∈ R+ \ S and z ∈ Bρ ∩ supp(ν̃). As in the second step of the proof of
proposition 2.1, we can check that there exists a sequence (yi)i ∈ supp(ν) s.t.

zi :=
yi
ri
→ z. (33)

Clearly, we can assume that |yi| ≤ 2riρ for all i; since yi ∈ supp(ν) ∩B2ρ, we can use
(31), (33) and the estimate proved in (30) to obtain the followings:

|< c(ρ), z >| = lim
i→+∞

|< b(ρri), yi >|
ri

= C(α) lim
i→0

|yi|2

ri
= 0. (34)

To resume, we have shown that

< c(ρ), z >= 0 ∀ρ ∈ R+ \ S ∀z ∈ Bρ ∩ supp(ν̃); (35)
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Given ρ ∈ R+ \ S, (35) immediately yields

0 =
1

ρα

ˆ
Bρ

< c(ρ), z > dν̃(z) =< c(ρ),
1

ρα

ˆ
Bρ

z dν̃(z) >= |c(ρ)| .

Since S is countable, by continuity, we deduce that c(ρ) = 0 for all ρ > 0. So, the proof
is concluded, modulo checking (30).

Step 2: We are left with the task of showing that there exists a constant C(α) > 0,
depending only on α, s.t. for all r > 0 for all y ∈ supp(ν) ∩ B2r (30) holds true. We
start with the trivial identity

2 < x, y >= |y|2 + (r2 − |x− y|2)− (r2 − |x|2) ∀x, y ∈ Rn ∀r > 0. (36)

Then, take r > 0 and y ∈ supp(ν) ∩B2r; we have

2 |< b(r), y >| = r−α
∣∣∣∣ˆ
Br

2 < x, y > dν(x)

∣∣∣∣ (37)

= r−α
∣∣∣∣|y|2 ν(Br) +

ˆ
Br

(r2 − |x− y|2) dν(x)−
ˆ
Br

(r2 − |x|2) dν(x)

∣∣∣∣
(38)

≤ ωα |y|2 + r−α
∣∣∣∣ˆ
Br

(r2 − |x− y|2) dν(x)−
ˆ
Br(y)

(r2 − |x− y|2) dν(x)

∣∣∣∣
≤ ωα

∣∣y2
∣∣+ r−α

ˆ
Br\Br(y)

∣∣r2 − |x− y|2
∣∣ dν(x)

+ r−α
ˆ
Br(y)\Br

∣∣r2 − |x− y|2
∣∣ dν(x) (39)

≤ ωα |y|2 + 4r−α+1 |y| [ν(Br \Br(y)) + ν(Br(y) \ ν(Br))]

= ωα |y|2 + 4r−α+1 |y| ν((Br \Br(y)) ∪ (Br(y) \ ν(Br)). (40)

In (37) we used (36); in (38) we used the fact that ν ∈ Uα(Rn) and the change of
variable formula for α-uniform measures stated in 1.24 (it applies since y ∈ supp(ν));
in (39) we used the following facts: since y ∈ B2r, for all x ∈ Br \Br(y) there holds

0 ≤ |x− y|2 − r2 ≤ |x− y|2 − |x|2 = (|x− y| − |y|)(|x− y|+ |y|) ≤ 4r |y| ;

similarly, for x ∈ Br(y) \Br, there holds

0 ≤ r2 − |x− y|2 ≤ 4r |y| .

At this point, two cases may occur.

• If |y| < r, then we have that

(Br \Br(y)) ∪ (Br(y) \ ν(Br) ⊆ Br+|y| \Br−|y|.

Then, for |y| < r and y ∈ supp(ν), (40) yields

2 |< b(r), y >| ≤ ωα |y|2 + 4 |y| r1−α[ν(Br+|y|)− ν(Br−|y|)]

= ωα |y|2 + 4ωα |y| r1−α[(r + |y|)α − [r − |y|]α]

= ωα |y|2 + 4ωα |y| r
[(

1 +
|y|
r

)α
−
(

1− |y|
r

)α]
(41)
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If α ∈ [0, 1], the function ψ(s) := sα is α-Hölder continuous in [0,+∞). Denote
by C(α) a positive contant that may change from line to line, depending only by
α. Then, (41) immediately implies that

2 |< b(r), y >| ≤ ωα |y|2 + 4C(α)ωα |y| r
(

2 |y|
r

)α
= ωα |y|2 + C(α)

|y|2

rα−1

≤ ωα |y|2 + C(α) |y|2

= C(α) |y|2 . (42)

If α > 1, the computation is very similar: recall that the function ψ(s) := sα is
convex [0,+∞); hence, there holds(

1 +
|y|
r

)α
−
(

1− |y|
r

)α
≤

(
sup
s∈(0,2)

ψ′(s)

)
2
|y|
r

= C(α)
y

r
.

Then, (41) yields

2 |< b(r), y >| ≤ ωα |y|2 + C(α) |y| r |y|
r

= C(α) |y|2 .. (43)

Hence, for all α ≥ 0, for all r > 0 for all |y| < r s.t. y ∈ supp(ν), we obtain (30).
Step 2: If r ≤ |y| ≤ 2r, we have that

(Br \Br(y)) ∪ (Br(y) \ ν(Br) ⊆ Br+|y|.

Then, (30) yields

2 |< b(r), y >| ≤ ωα |y|2 + 4 |y| r1−αν(Br+|y|)

= ωα |y|2 + 4ωα |y| r1−α(r + |y|)α

= ωα |y|2 + C(α) |y| r
(

1 +
|y|
r

)α
≤ ωα |y|2 + C(α) |y| r
≤ C(α) |y|2 .

We have shown that (30) holds true for all r > 0 for all y ∈ B2r ∩ supp(ν).

Hence, the proof is concluded.

Now, we are in the position to give a complete proof of proposition 2.2.

Proof of 2.2. We have already noticed in 1.25 that α as to be at most n. However, if
α = n, the proof is concluded; so, we can assume that α < n.

We claim that Uα(Rn) 6= ∅ implies that Uα(Rn−1) 6= ∅.

• Take µ ∈ Uα(Rn); by lemma (2.5), we can find y ∈ supp(µ) and a system of
coordinates (x1, . . . , xn) on Rn s.t. supp(µ) ⊆ {x1 ≥ 0}.

• Take ν ∈ Tanα; by lemma (2.3), we deduce that ν ∈ Uα(Rn). It is immediate to
check that supp(ν) ⊆ supp(µ) ⊆ {x1 ≥ 0}.
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• Finally, consider ν̃ ∈ Tanα(ν, 0); by lemma 2.3, ν̃ ∈ Uα(Rn); moreover, lemma 2.6
implies that supp(ν̃) ⊆ {x1 = 0}. Then, ν̃ can be naturally seen as an element of
Uα(Rn−1).

At this point, we show that α is integer. By iteration of the previous argument,
we obtain that Uα(R[α]) 6= ∅. Assume by contradiction that α is not integer; then
α > [α] and Uα(R[α]) should be empty by the first of these steps. Hence, we find a
contradiction.
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